

NASA Technology Days Overview Briefing

for

IODA

(Integrated Optical Design Analysis) New Features and Improvements

A Software Tool for Concurrent Engineering Design of Optical Systems

24 May 2002
Developed Under Contract No.
NAS8-0005

Presented by Jim Moore

Overview

Integrated Modeling Approach

Integrated Optical Design Analysis (IODA) Software Simplifies and Automates Data Sharing for Concurrent Design by a Diverse Team of Engineering Specialist

Topics

- Code Description and Model Interactions
- Summary of Features
- Actuator Influence Functions
- Figure Optimization Using Influence Functions
- Measured Data Import and Data Post Processing
- Dynamic Image Analysis
- Summary

Schematic of Data Flow and Software Interactions

Requirement

Design Modification

Satisfactory

Summary of IODA Features

- Transfer Optical Surface Deflections from FEA to Code V™ for coupled Optomechanical Analysis
 - Select and Group Optical Surface Nodes
 - Map Optical Surface Deflections to a Uniform Grid as Required for Optical Model Definition
 - Generate Zernike Polynomials and/or Interferogram Files for Optical Model
 - Map Deformations into Optical Model Surfaces (Multiple Flexible Surfaces)
- Generate Parametric Analysis from Multiple Load Cases
- Automated Macros For Generating Most of the Optical Metrics versus Load Case
- Data Post Processing and Decomposition into Zernike Terms
- ALGOR Interface Developed for Linear and Non-Linear FEA
- Automated Generation of Influence Functions For Optical Surfaces
- Least Squares Routine Developed to Solve for Actuator Positions to Minimize RMS Figure Error
- Comparison of Measured Data to Modeled Data and Multiple Load Cases to Each Other
- Dynamic Analysis Capability Added to Generate Wavefront and Image Analysis for Dynamic Loading

Automated Generation of Actuator Influence Functions

- Variable Stiffness
 Actuators Modeled
 Using SPCD in
 NASTRAN or
 Boundary Element in
 ALGOR
- Actuator Stroke in Optical Axis or User Defined Local Coordinate System
- Generates Influence

 Function for Each
 Actuator and Each
 Surface Node
 Included in IODA
 Optical Group

Influence Coefficients Generated for Spherical Mirror Model

- IODA Generates
 Influence Coefficients
 for Each Node Selected
 As a Control Point
- Generates and Stores

 I Matrix (Number of
 Control Points by
 Number of Surface
 Nodes) for
 Optimization Routine
- User Specified Actuator Stroke
- Influence Functions
 Can Be Generated for
 Any IODA Group

Least Squares Routine Developed for Figure Optimization Using Influence Functions

$$\overline{e}$$
 = Inverse of Initial Error Vector

$$[I]$$
 = Influence Matrix

$$\overline{P}$$
 = Actuator Position Vector

Least Squares Solution for P Generated by Solving...

$$\overline{\mathbf{P}} = [\mathbf{I}^{\mathsf{T}}\mathbf{I}]^{-1}[\mathbf{I}^{\mathsf{T}}] e$$

$$\delta_i$$
 = Nodal Deflection for Optical Surface Nodes

P = Actuator Positions That Satisfy

$$\sum_{i=1}^{n} (\delta_i - e_i)^2 = Minimum$$

Final Figure Calculated by Superimposing Initial Deflections with Deflections from Corrected Case

Note: Current Analysis Gives Each Node Equal Weighting; Weighting Function Options Under Development

Figure Optimization Using IODA Influence **Function and Least Squares Routine**

Modeled Error Source (Gravity and Actuator **Position Error**)

- 1-G Load in Optical Axis Direction
- 0.8 Micron Actuator Error on Actuator 7
- Deformation Scaling 50,000

Uncorrected Figure

P.V.

Corrected Figure

Optimized Actuator Positions

Position lin v 10-5

Number	(in x 10 ⁻⁵)
_ 1	2.004
2	2.000
3	2.004
4	1.986
5	2.004
6	2.000
7	5.504
8	1.986
9	-2.793

Modeled Data Set Post Processing

- Evaluate Effects of Mirror Mount Changes, Material Substitutions or Design Changes
- Characterize the Nature of Changes
 Using Zernike Polynomial Fit Tools
- Supports Model to Model Comparison and Model to Measured Data Comparison

Measured Data Import and Post Processing Features

- Import Capability for Code V™
 Compatible .int File From
 Measured Data (Uniform Grid or Zernike Formats)
- Data Can Be Fit and Manipulated Using IODA Zernike Routines
- Measured Data Can Be Subtracted From Model Results for Comparison
- Zernike Modeling of Differences
 Files
- Averaging of Multiple Data Sets

Example Data Input From XRCF Test

Imported Data File With 43 Wavescope Zernike Coefficients Removed

Dynamic Image and Wavefront Analysis

NASTRAN Model

- Direct Transient Response (SOL 109)
- Model Transient Response (SOL 112)

Displacement Output at User Specified Intervals

IODA Model Extracts Surface Deflections, Creates Code V .int Files, and Dynamically Updates Optical Model

Image Analysis Including System Dynamic Response

NASTRAN Dynamic Response Analysis

Nodal Displacement

IODA Generated Uniform Grid File

- IODA Processes Data From Dynamic Finite Element Analysis at Frequency of FEA Output
- Each IODA Optical Group's Time Dependent Displacements Are Mapped to Code V™ Sequence File
- Code V[™] Macro List Is Supported to Generate Time Dependent Performance Metrics

Summary

- •IODA Provides a User Friendly Graphical Interface Between Thermomechanical and Optical Analysis Tools
- Eliminates Many Potential Error Sources and Reduces Time Required for Integrated Modeling
- New Features Being Developed to Support AMSD Testing at MSFC
 - Actuator Influence Functions
 - Figure Optimization
 - Direct Import of Measured Optical Data
 - Dynamic Analysis Capability
- Demonstration Copies Available